Smoothed Particle Hydrodynamics in cosmology: a comparative study of implementations
نویسندگان
چکیده
منابع مشابه
Smoothed Particle Hydrodynamics in cosmology: a comparative study of implementations
We analyse the performance of twelve different implementations of Smoothed Particle Hydrodynamics (SPH) using seven tests designed to isolate key hydrodynamic elements of cosmological simulations which are known to cause the SPH algorithm problems. In order, we consider a shock tube, spherical adiabatic collapse, cooling flow model, drag, a cosmological simulation, rotating cloud-collapse and d...
متن کاملSmoothed Particle Hydrodynamics in Numerical Cosmology Daniel Price
We have carried out a comparison study of hydrodynamical codes by investigating their performance in modelling interacting multiphase fluids. The two commonly used techniques of grid and smoothed particle hydrodynamics (SPH) show striking differences in their ability to model processes that are fundamentally important across many areas of astrophysics. Whilst Eulerian grid based methods are abl...
متن کاملIncompressible smoothed particle hydrodynamics
We present a smoothed particle hydrodynamic model for incompressible fluids. As opposed to solving a pressure Poisson equation in order to get a divergence-free velocity field, here incompressibility is achieved by requiring as a kinematic constraint that the volume of the fluid particles is constant. We use Lagrangian multipliers to enforce this restriction. These Lagrange multipliers play the...
متن کاملSmoothed particle hydrodynamics
In this review the theory and application of Smoothed particle hydrodynamics (SPH) since its inception in 1977 are discussed. Emphasis is placed on the strengths and weaknesses, the analogy with particle dynamics and the numerous areas where SPH has been successfully applied. 0034-4885/05/081703+57$90.00 © 2005 IOP Publishing Ltd Printed in the UK 1703
متن کاملSmoothed Particle Hydrodynamics :
We investigate the core mass distribution (CMD) resulting from numerical models of turbulent fragmentation of molecular clouds. In particular we study its dependence on the sonic rms Mach numberMs. We analyze simulations withMs ranging from 1 to 15 to show that, asMs increases, the number of cores increases as well, while their average mass decreases. This stems from the fact that high Mach num...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2000
ISSN: 0035-8711,1365-2966
DOI: 10.1046/j.1365-8711.2000.03927.x